System Inductance for MVDC Circuit Breakers

Norbert Doerry & John V. Amy Jr. NSWC Carderock Division and NSWC Philadelphia Division Electric Ship Technologies (Virtual) Symposium 2021 August 3-6, 2021

Introduction

- Medium Voltage Direct Current (MVDC) is a candidate for future naval electrical power systems
 - High Power and Pulsed loads
 - Fuel Efficiency
 - Power Density
- MVDC system characteristics
 - Regulated entirely by Power Electronic converters
 - All loads interact with MVDC bus via Power Electronic converters
 - Electrical Dynamics will be faster
 - Cable properties will likely be different from Medium Voltage Alternating Current (MVAC) cables
 - Traditional MVAC circuit breakers will not work due to lack of current zero crossing
- Solid State Circuit Breakers (SSCB) are one alternative for circuit protection
 - Typically have a series inductor (*L*) to limit current rise time
 - Inductance value depends on system inductance.

Is L needed? If so, what should be its value?

Minimum System Inductance

- SSCB design characterized by:
 - Rated Current
 - Maximum Current Interruption Capability
 - Interruption time
 - Detect
 - Localize / Coordinate
 - Interrupt

$$L_{sys_min} = \frac{1000 \, V_{sys} t_{int}}{(n_{SSCB_int} - 1) I_{SSCB_rate}}$$
(1)

L _{sys_min}	minimum system inductance (µH)
V_{sys}	system voltage (kV)
t _{int}	time to peak current (μ s)
N SSCB_int	Multiple of steady-state rated current SSCB
	can interrupt
I_{SSCB_rate}	Steady-state rated current of SSCB (A)

System Voltage (kV)	SSCB current Rating (amps)	SSCB Interrupt Multiple	Interrupt Time (microseconds)	Minum System Inductance (uH)
12	250	2	2	96.0
12	250	5	2	24.0
12	250	10	2	10.7
12	250	2	5	240.0
12	250	5	5	60.0
12	250	10	5	26.7
12	250	2	10	480.0
12	250	5	10	120.0
12	250	10	10	53.3
12	2000	2	2	12.0
12	2000	5	2	3.0
12	2000	10	2	1.3
12	2000	2	5	30.0
12	2000	5	5	7.5
12	2000	10	5	3.3
12	2000	2	10	60.0
12	2000	5	10	15.0
12	2000	10	10	6.7
12	4000	2	2	6.0
12	4000	5	2	1.5
12	4000	10	2	0.7
12	4000	2	5	15.0
12	4000	5	5	3.8
12	4000	10	5	1.7
12	4000	2	10	30.0
12	4000	5	10	7.5
12	4000	10	10	3.3

Calculating System Inductance

- System inductance is the Thévenin equivalent calculated for each "side" of a SSCB.
 - Thévenin voltage approximated as nominal system voltage
 - If a "side" is only connected to loads, it is not a source of fault current and can be ignored.
- This system inductance is compared to the minimum system inductance to see if additional inductance must be added.
- Assumptions
 - Sources are stiff
 - Loads are not a source of fault current

Options to Lower Required System Inductance

- Clear Faults Faster
 - Detect and localize faults faster
 - Use devices that can turn off the fault current faster
- Increase the amount of current the SSCB can interrupt.
 - Use different devices
 - Use more devices in parallel
 - Use a SSCB rated for a higher steadystate current

$$L_{sys_min} = \frac{1000 V_{sys} t_{int}}{(n_{SSCB_int} - 1) l_{SSCB_rate}}$$
(1)

$$L_{sys_min} \qquad \text{minimum system inductance } (\mu H)$$

$$V_{sys} \qquad \text{system voltage } (kV)$$

$$t_{int} \qquad \text{time to peak current } (\mu s)$$

$$n_{SSCB_int} \qquad \text{Multiple of steady-state rated current SSCB}$$

$$can interrupt$$

$$I_{SSCB_rate} \qquad \text{Steady-state rated current of SSCB } (A)$$

Options to Raise System Inductance

- Add inductance to each SSCB
 - Choose values such that the minimum system inductance is available for all configurations of the power system
- Add inductance to each source
 - Island each source upon detection of a fault
- Combination of the above

Fault Detection and Localization Implications

- SSCBs feeding only loads need not coordinate with other SSCBs; they can trip on overcurrent
- SSCBs connected to a source need not coordinate with other SSCBs upon detecting reverse current.
- All other conditions require coordination to ensure only the correct SSCBs trip
- Recommend combination of directional and differential protection

Stability Implications

- Increasing system

 Inductance implies that the
 load capacitance must also
 increase to ensure stability
- Hence minimizing additional system inductance is desirable.

Stability Condition for Constant Power Loads And sources employing droop

Where

20	Rated Power
B	Nominal System Voltage
NL	No load voltage
1	droop coefficient
7	Load input capacitance
	System inductance

Pulsed Load Implications

- The current in a SSCB may have to reverse direction when supplying a pulse to a pulsed load.
- Current reversal through an inductor requires time.
- Keeping the current through the inductor unidirectional reduces time to increase the current.
- Unidirectional inductor can be designed to be lighter and smaller than a bi-directional inductor.
- Comes at the expense of power losses in the diodes.

Alternate Fault Detection, Localization, and Isolation Methods

- Replace SSCBs that do not connect directly to a source with a disconnect switch.
- Install minimum system inductance in the remaining SSCBs.
- Upon detection of a fault, all SSCBs open
- The fault current will likely require several milliseconds to decay before the disconnect switches can open
 - Use this time to localize the fault with differential or directional protection
 - Only command the appropriate disconnect switches to open or close
- Once disconnects are final position and the fault isolated, close the SSCBs to energize the bus.
- Once the bus is energized, loads can start drawing power.
- Overall power interruption time is anticipate to be less than 100 ms; critical loads must ride through this interruption.

Conclusions

- System Inductance of shipboard cables not likely to be sufficient for SSCB operation.
- If using only SSCBs, recommend locating additional inductance with the sources.
- If using SSCBs only with sources, recommend adding the minimum system inductance to each SSCB.

